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Abstract. The flavor asymmetry of the unpolarized antiquark distributions in the proton, ū(x)− d̄(x) < 0,
can qualitatively be explained as an effect of the pion cloud. Corresponding predictions have been made
for the polarized asymmetry, ∆ū(x)−∆d̄(x), based on rho-meson contributions. These estimates differ in
sign and magnitude from those obtained in quark-based models, which give ∆ū(x) − ∆d̄(x) > 0. Using
a simple chiral linear sigma model as an example, we demonstrate that in the meson cloud picture a
large positive ∆ū(x)−∆d̄(x) can be obtained from π-σ interference contributions. This calls into question
previous estimates based on rho-meson contributions alone, and indicates how the results of the meson
cloud picture may be reconciled with those of quark-based models.

PACS. 12.39.Fe Chiral Lagrangians – 13.60.Hb Total and inclusive cross-sections (including deep-inelastic
processes) – 13.88.+e Polarization in interactions and scattering

The flavor asymmetries of the nucleon’s antiquark dis-
tributions have attracted considerable interest in recent
years. Although measured in deep-inelastic scattering at
large momentum transfers, these are low-energy charac-
teristics of the nucleon, whose origin can be understood
on grounds of the same effective dynamics which gives
rise to hadronic characteristics such as form factors, mag-
netic moments, etc. It is now well established that the
unpolarized antiquark distributions in the proton are not
flavor symmetric: d̄(x) > ū(x). Deep-inelastic lepton scat-
tering has convincingly demonstrated the violation of the
so-called Gottfried sum rule [1], and the E866 Drell-Yan
pair production data [2] as well as the HERMES results
on semi-inclusive deep-inelastic scattering [3] allow to map
even the x-dependence of the asymmetry. Various theo-
retical explanations for the origin of this asymmetry have
been offered [1]. In particular, it has been argued that
it can be explained as an effect of the “pion cloud” of
the proton on the parton distributions (Sullivan mecha-
nism) [4,5]. The asymmetry arises because fluctuations
p → nπ+ are more likely than p → ∆++π− due to the
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larger mass of the ∆-resonance, which implies a larger
number of π+ than π− in the proton’s cloud. It should
be noted that a quantitative description of the observed
asymmetry based on pion cloud contributions alone re-
quires large pion virtualities, for which the very notion of
pion exchange becomes questionable; see, e.g., ref. [6] for a
discussion. Nevertheless, this simple picture has attracted
considerable interest.

Recently, the polarized antiquark flavor asymmetry,
∆ū(x) − ∆d̄(x), has become a focus of attention. It is
expected that this asymmetry will be measured with good
accuracy in polarized semi-inclusive particle production
at the HERMES experiment, and, in particular, in future
polarized Drell-Yan pair or W± production experiments
at RHIC [7–10]. The published semi-inclusive data from
HERMES [11] and SMC [12] do not yet allow for signif-
icant conclusions [13]; improved data from HERMES are
expected to be released soon. On the theoretical side,
interest was caused by an estimate within the chiral
quark-soliton model of the nucleon, based on the large-Nc

limit of QCD, which suggests a surprisingly large positive
∆ū(x) − ∆d̄(x), larger than the unpolarized asymmetry,
d̄(x) − ū(x) [14]. Similar results have been obtained in
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other quark-based models, such as the bag model [15] and
the statistical models of parton distributions of refs. [16]
and [17].

There have also been attempts to understand the
polarized asymmetry on the basis of meson cloud con-
tributions, in analogy to the Sullivan mechanism for the
unpolarized asymmetry. The πN and π∆ configurations,
which “work” in the unpolarized case, give zero contri-
bution to the polarized flavor asymmetry. This has lead
people to consider also vector mesons in this picture.
The inclusion of ρN contributions [18] indeed leads to
a non-zero ∆ū(x) − ∆d̄(x), which, however, is an order
of magnitude smaller than the unpolarized asymmetry,
and has opposite sign compared to the results of the
quark-based models [15–17] and the chiral quark-soliton
model [14]. Reference [19] studied ρN -πN interference
contributions relevant at small x, see also ref. [15],
the sign again opposite to the results of quark-based
models. The estimate of ref. [18] was refined by including
also higher-twist components of the ρ-meson structure
function [20], which, however, do not change the order of
magnitude of the result. This apparent disagreement be-
tween the “mesonic” and the “quark-based” descriptions
of the polarized asymmetry has left the impression that
the situation with theoretical predictions of the polarized
asymmetry was essentially unclear.

Here, we want to argue that a negative ∆ū(x)−∆d̄(x)
is by no means a necessary consequence of the meson cloud
picture. A sizable positive asymmetry is naturally ob-
tained from the interference of πN and “σN” components
of the nucleon wave function. By this we mean a scalar-
isoscalar exchange, which, e.g., mediates the intermediate-
range NN interaction in the meson exchange parametriza-
tion of ref. [21] (Bonn potential). The possibility of such
contributions to the polarized asymmetry was first pointed
out in ref. [13]. The problem of the dynamical nature of
the “σ-meson” —whether it should be regarded as an ef-
fective description of a ππ resonance— has been discussed
extensively in the literature and shall not be our main con-
cern here. Rather, we want to make two qualitative points.
First, the large asymmetry obtained from πN -“σN” inter-
ference calls into question previous calculations within the
meson cloud model which did not include this effect in one
form or another [18–20]. Second, including πN -“σN” in-
terference in the meson cloud picture, one can restore qual-
itative agreement with the quark-based predictions for the
polarized asymmetry.

To illustrate our points, we compute the πN -σN inter-
ference contributions to ∆ū(x)−∆d̄(x) in the proton in a
version of the meson cloud model with elementary π and
σ fields coupled to the nucleon (linear sigma model). This
effective model incorporates the spontaneous breaking of
chiral symmetry. The sigma-meson appears as the chiral
partner of the pion; its mass is due to the spontaneous
breaking of chiral symmetry.

The isovector polarized quark and antiquark distribu-
tions in the proton are defined by the matrix element of
the twist-2 axial vector QCD light-ray operator (ψ̄ and ψ
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Fig. 1. πN -σN “interference-type” graphs contributing to
∆ū(x) − ∆d̄(x) in the proton. The crosses denote the quark
fields in the QCD twist-2 operator, cf. eq. (1).

are the QCD quark fields):
∫

dz−

2π
e±ixp+z−〈p|ψ̄(−z/2)γ+γ5τ

3ψ(z/2)|p〉z+,z⊥=0

= Ūγ+γ5U ×
{
[∆u(x)− ∆d(x)][
∆ū(x)− ∆d̄(x)

] . (1)

Here, 0 < x < 1, and z± = (z0 ± z3)/
√
2 and z⊥ are the

usual light-like coordinates, τ3 the isospin Pauli matrix,
and Ū , U the proton spinors. We consider the contribution
to the matrix element from the “interference-type” graphs
of fig. 1. The vertices in the lower parts of the graphs
are the standard pseudoscalar-isovector πN and scalar-
isoscalar σN coupling. The blob in the upper parts denotes
the “bosonized” version of the isovector axial vector twist-
2 operator, i.e., the operator expressed in terms of the π
and σ fields of our effective low-energy model. We suppose
here that the QCD operator is normalized at a scale of
∼ 1GeV, up to which the effective model is assumed to
be valid. On general grounds the matching of the QCD
operator with an operator in the effective model must be
of the form

ψ̄(−z/2)γ+γ5τ
aψ(z/2)|z2=0

→
∫ 1

−1

dy gπσ(y) σ(−yz/2)
↔
∂

+πa(yz/2)|z2=0 , (2)

up to terms of higher orders in derivatives of the fields,
which we shall neglect. Here, gπσ(y) is a scalar function,
which we refer to as the “π-σ transition parton density”.
The expansion of eq. (2) in powers of the light-like dis-
tance, z, implies that the local twist-2 spin-n operator
is mapped onto the local twist-2 spin-n operator built
from the π and σ fields, with the coefficient given by
the n-th moment of gπσ. Time reversal invariance requires
gπσ(y) = gπσ(−y). The normalization of the function fol-
lows from considering the limit z → 0. The RHS of eq. (2)
must reduce to the isovector axial current operator in the
π and σ fields, σ(0)

↔
∂ µπa(0), whose form is completely

determined by chiral symmetry. This implies
∫ 1

−1

dx gπσ(y) = 2 . (3)

In order to constrain the y-dependence of gπσ, we note
that a global chiral rotation transforms the axial vector
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operators of eq. (2) into the corresponding vector oper-
ators, whose matrix element between pion states defines
the valence quark distribution in the pion, vπ(y). Thus, in
our approximation we can identify

gπσ(y) =
1
2
vπ(|y|) . (4)

In our estimate we use the parametrization of ref. [22] for
vπ(y), obtained from fitting πN Drell-Yan data.

The contribution of the two graphs of fig. 1 to the
polarized flavor asymmetry can be put in the form

∆ū(x)− ∆d̄(x) =
∫ 1

x

dy

y
gπσ(y) Wπσ

(
x

y

)
, (5)

where Wπσ(x/y) denotes the correlation function of the π
and σ fields in the nucleon depending on the + component
of the fields’ momenta (v ≡ x/y):

Wπσ(v) =
gπNNgσNN

4π

∫
d2k⊥
(2π)2

× v[k2
⊥ + v(2− v)M2

N ]
[k2

⊥ + v2M2
N + (1− v)M2

π ]

× 1
[k2

⊥ + v2M2
N + (1− v)M2

σ ]
. (6)

This function plays a role analogous to the “number of
pions with momentum fraction v” in the usual πN con-
tribution to the unpolarized asymmetry [5]. The integral
over the transverse momentum k⊥ contains a would-be
logarithmic divergence which is regularized by cutoffs as-
sociated with the πN and σN vertices, not indicated in
eq. (6). For a numerical estimate we use coupling constants
gπNN = 13.5, gσNN = 14.6, Mσ = 0.72GeV [21], and ex-
ponential cutoffs with Λπ = 1.1GeV and Λσ = 1.6GeV;
the relation between the parameters for different func-
tional forms of the cutoff is discussed, e.g., in the arti-
cles by Kumano quoted in ref. [5], and in ref. [6]. The re-
sult for ∆ū(x)−∆d̄(x) is shown in fig. 2 (solid line). The
dashed line shows the πN contribution to the unpolarized
asymmetry, d̄(x)− ū(x), evaluated with the same parame-
ters. One sees that the polarized asymmetry incurred from
πN -σN interference is positive, and of the same order of
magnitude as the unpolarized one. In fig. 2, for the sake
of comparison, we show d̄(x) − ū(x) as generated by πN
contributions only; it is known that the inclusion of inter-
mediate ∆ states reduces this value by almost 50% [5]. In
principle ∆ contributions could be included also in the es-
timate of the polarized asymmetry; however, we would not
expect them to change the sign and order of magnitude of
the results. Finally, the dotted line in fig. 2 shows the po-
larized asymmetry obtained from ρN contributions [18].

In fig. 3 we compare the πN -σN interference con-
tribution to ∆ū(x) − ∆d̄(x) (solid line) with the re-
sult obtained in the chiral quark-soliton model (dashed
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Fig. 2. Various contributions to the antiquark flavor
asymmetry in the proton (unpolarized and polarized) in
the meson cloud model (scale µ2 = 1GeV2). Dashed
line: x[d̄(x) − ū(x)], πN contributions (Sullivan mechanism).
Dotted line: x[∆ū(x) − ∆d̄(x)], ρN contribution [18]. Solid
line: x[∆ū(x) − ∆d̄(x)], πN -σN interference contribution.
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Fig. 3. Comparison of model results for the polarized flavor
asymmetry x[∆ū(x) − ∆d̄(x)] in the proton (µ2 = 1GeV2).
Dotted line: Pauli-blocking ansatz of ref. [23]. Dashed line: Chi-
ral quark-soliton model [14]. Solid line: πN -σN interference
contribution in the meson cloud model (cf. fig. 2).

line). Also shown is the phenomenological Pauli-blocking–
inspired parametrization of ref. [23] (dotted line). All ap-
proaches suggest a sizable positive ∆ū(x)− ∆d̄(x). Simi-
lar qualitative agreement would be observed with the bag
model result of ref. [15] and the statistical quark models
of refs. [16,17]. We stress that our point here is entirely
qualitative, concerning only the sign and order of mag-
nitude of the asymmetry. We are not suggesting that the
πN -σN contributions in our simple chiral model can claim
to give a quantitative description of the magnitude of the
asymmetry and its x-dependence. Nevertheless, given the
disagreement even in sign of the previous ρ-meson cloud
estimates with the quark-based models, we think that the
agreement at the present level is worth noting. To the very
least, our results indicate that the ρN contributions are
not the dominant ones in a hadronic description of the
polarized asymmetries.
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A consistent and quantitative description of the po-
larized antiquark flavor asymmetry is provided by the
chiral quark-soliton model of the nucleon, based on the
large-Nc limit of QCD [14]. In this approach the nucleon
is described as a self-consistent configuration character-
ized by a classical pion field, in which quarks move in
single-particle orbits. The quark spectrum includes a dis-
crete bound-state level in addition to the polarized Dirac
sea [24]. The quark/antiquark distributions are computed
by summing over the contributions of all quark levels, in-
cluding both the bound-state level and the polarized Dirac
sea. The result for ∆ū(x)−∆d̄(x) is shown in fig. 3 (dashed
line). Moreover, as was shown in refs. [14,13], in this model
the polarized flavor asymmetry can be computed analyti-
cally by way of an expansion in gradients of the classical
pion field characterizing the nucleon. The resulting expres-
sion for ∆ū(x)−∆d̄(x) has the form of a spatial integral of
the the isovector-pseudoscalar and scalar-isoscalar combi-
nations of the classical pion field, reminiscent in quantum
numbers of the πN -σN interference contribution in the
meson cloud model [13]. Thus, the semi-classical descrip-
tion of the nucleon at large Nc reproduces the physics of
“meson cloud” contributions to the nucleon parton dis-
tributions without appealing to the notion of individual
meson exchange graphs. In this way it avoids the concep-
tual problems of the meson cloud model related to the
neglect of multiple exchanges and the large virtuality of
the exchanged mesons (see ref. [6] for a critical discussion).

To summarize, we have shown that the inclusion of
πN -σN interference contributions in a meson cloud pic-
ture naturally leads to a large positive polarized anti-
quark flavor asymmetry ∆ū(x) − ∆d̄(x). This indicates
that the results of previous meson cloud estimates based
on ρ-meson contributions alone may be misleading [18–
20]. With πN -σN interference contributions included, the
meson cloud estimate for ∆ū(x)−∆d̄(x) is of the same sign
and order of magnitude as the asymmetry predicted by the
chiral quark-soliton model, as well as other quark-based
models. This should be good news for experiments aimed
at extracting ∆ū(x) − ∆d̄(x), both from semi-inclusive
deep-inelastic scattering and Drell-Yan/W± production.
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